Tuning microtubule-based transport through filamentous MAPs: the problem of dynein.

نویسندگان

  • Michael Vershinin
  • Jing Xu
  • David S Razafsky
  • Stephen J King
  • Steven P Gross
چکیده

We recently proposed that regulating the single-to-multiple motor transition was a likely strategy for regulating kinesin-based transport in vivo. In this study, we use an in vitro bead assay coupled with an optical trap to investigate how this proposed regulatory mechanism affects dynein-based transport. We show that tau's regulation of kinesin function can proceed without interfering with dynein-based transport. Surprisingly, at extremely high tau levels--where kinesin cannot bind microtubules (MTs)--dynein can still contact MTs. The difference between tau's effects on kinesin- and dynein-based motility suggests that tau can be used to tune relative amounts of plus-end and minus-end-directed transport. As in the case of kinesin, we find that the 3RS isoform of tau is a more potent inhibitor of dynein binding to MTs. We show that this isoform-specific effect is not because of steric interference of tau's projection domains but rather because of tau's interactions with the motor at the MT surface. Nonetheless, we do observe a modest steric interference effect of tau away from the MT and discuss the potential implications of this for molecular motor structure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tau directs intracellular trafficking by regulating the forces exerted by kinesin and dynein teams.

Organelles, proteins, and mRNA are transported bidirectionally along microtubules by plus-end directed kinesin and minus-end directed dynein motors. Microtubules are decorated by microtubule-associated proteins (MAPs) that organize the cytoskeleton, regulate microtubule dynamics and modulate the interaction between motor proteins and microtubules to direct intracellular transport. Tau is a neur...

متن کامل

Lis1 is an initiation factor for dynein-driven organelle transport

The molecular motor cytoplasmic dynein is responsible for most minus-end-directed, microtubule-based transport in eukaryotic cells. It is especially important in neurons, where defects in microtubule-based motility have been linked to neurological diseases. For example, lissencephaly is caused by mutations in the dynein-associated protein Lis1. In this paper, using the long, highly polarized hy...

متن کامل

A microscopy-based screen employing multiplex genome sequencing identifies cargo-specific requirements for dynein velocity

The timely delivery of membranous organelles and macromolecules to specific locations within the majority of eukaryotic cells depends on microtubule-based transport. Here we describe a screening method to identify mutations that have a critical effect on intracellular transport and its regulation using mutagenesis, multicolor-fluorescence microscopy, and multiplex genome sequencing. This screen...

متن کامل

Differential regulation of dynein and kinesin motor proteins by tau.

Dynein and kinesin motor proteins transport cellular cargoes toward opposite ends of microtubule tracks. In neurons, microtubules are abundantly decorated with microtubule-associated proteins (MAPs) such as tau. Motor proteins thus encounter MAPs frequently along their path. To determine the effects of tau on dynein and kinesin motility, we conducted single-molecule studies of motor proteins mo...

متن کامل

The Aspergillus cytoplasmic dynein heavy chain and NUDF localize to microtubule ends and affect microtubule dynamics

Cytoplasmic dynein is a multisubunit, minus end-directed microtubule motor that uses dynactin as an accessory complex to perform various in vivo functions including vesicle transport, spindle assembly, and nuclear distribution [1]. We previously showed that in the filamentous fungus Aspergillus nidulans, a GFP-tagged cytoplasmic dynein heavy chain (NUDA) forms comet-like structures that exhibit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Traffic

دوره 9 6  شماره 

صفحات  -

تاریخ انتشار 2008